..

தொலைத்தொடர்பு அமைப்பு மற்றும் மேலாண்மை

ஐ.எஸ்.எஸ்.என்: 2167-0919

திறந்த அணுகல்
கையெழுத்துப் பிரதியை சமர்ப்பிக்கவும் arrow_forward arrow_forward ..

Machine Vision for Automatic Quality Control of Uni- directional Tape Production

Abstract

Somesh Devagekar

The  quality  of  uni-directional  tape  in  production  process  is  affected  by environmental  conditions  like  temperature  and  production  speed.  Machine  vision algorithms on the scanned images are deployed in this context to detect and classify tape damages during the manufacturing procedure. We perform a comparative study among famous feature descriptors for fault candidate generation, then propose own features for fault detection using various machine learning techniques. The empirical results   demonstrate   the   high   performance   of   the   proposed   system   and   show preference  of  random  forest  and  canny  edges  for  classifier  and  feature  generator respectively.

 

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

இந்தக் கட்டுரையைப் பகிரவும்

குறியிடப்பட்டது

arrow_upward arrow_upward