Rizik L, Ram Y and Danial R
Biomolecular computing, encompassing computations performed by molecules, proteins and DNA, is a central area of focus in Synthetic Biology research and development, which attempt to apply engineering design principles in living cells. Two major computation paradigms have been implemented so far in living cells - analog paradigm that computes with a continuous set of numbers and digital paradigm that computes with two-discreet set of numbers. Here, we analyze the biophysical and technological limits of large-scale gene networks created based on analog and digital computation in living cells. More specifically, we calculate the precision of analog systems and the noise margin of digital systems in living cells. We conclude that both systems are challenging to operate with low protein levels. To overcome this challenge, we show that analog systems should operate with a Hill coefficient smaller than 1 and digital systems should be buffered. Furthermore, an analytical description of a biophysical model recently developed for positive feedback linearization circuits and used in analog synthetic biology, is presented. Finally, we suggest new directions for engineering biological circuits capable of computation.
இந்தக் கட்டுரையைப் பகிரவும்