..

பொதுமைப்படுத்தப்பட்ட பொய் கோட்பாடு மற்றும் பயன்பாடுகளின் இதழ்

ஐ.எஸ்.எஸ்.என்: 1736-4337

திறந்த அணுகல்
கையெழுத்துப் பிரதியை சமர்ப்பிக்கவும் arrow_forward arrow_forward ..

Existence Theorems in Linear Chaos

Abstract

Stanislav Shkarin

Chaotic linear dynamics deals primarily with various topological ergodic properties of semigroups of continuous linear operators acting on a topological vector space. In this survey paper, we treat questions of characterizing which of the spaces from a given class support a semigroup of prescribed shape satisfying a given topological ergodic property. In particular, we characterize countable inductive limits of separable Banach spaces that admit a hypercyclic operator, show that there is a non-mixing hypercyclic operator on a separable infinite dimensional complex Fréchet space X if and only if X is non-isomorphic to the space ω of all sequences with coordinatewise convergence topology. It is also shown for any k ∈ N, any separable infinite dimensional Fréchet space X non-isomorphic to ω admits a mixing uniformly continuous group {Tt}t∈Cn T of continuous linear operators and that there is no supercyclic strongly continuous operator semigroup {Tt}t≥0 on ω. We specify a wide class of Fréchet spaces X, including all infinite dimensional Banach spaces with separable dual, such that there is a hypercyclic operator T on X for which the dual operator T′ is also hypercyclic. An extension of the Salas theorem on hypercyclicity of a perturbation of the identity by adding a backward weighted shift is presented and its various applications are outlined.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

இந்தக் கட்டுரையைப் பகிரவும்

குறியிடப்பட்டது

arrow_upward arrow_upward