..

பயோமெட்ரிக்ஸ் & பயோஸ்டாடிஸ்டிக்ஸ் ஜர்னல்

ஐ.எஸ்.எஸ்.என்: 2155-6180

திறந்த அணுகல்
கையெழுத்துப் பிரதியை சமர்ப்பிக்கவும் arrow_forward arrow_forward ..

Multimodal Biometrics Based on Identification and Verification System

Abstract

Osamah Al-Hamdani, Ali Chekima, Jamal Dargham, Sh-Hussain Salleh, Fuad Noman, Hadri Hussain, AK Ariff and Alias Mohd Noor

The need for an increase of reliability and security in a biometric system is motivated by the fact that there is no single technology that can realize multi-purpose scenarios. Experimental results showed that the recognition rate of Heart Sound Identification (HSI) model is 81.9%, while the rate for Speaker Identification (SI) model is 99.3% from 20 clients and 70 impostors. Heart Sound-Verification (HSV) provides an average Equal Error Rate (EER) of 13.8%, while the average EER for the Speaker Verification model (SV) is 2.1%. Electrocardiogram Identification (ECGI), on the other hand, provides an accuracy of 98.5% and ECG Verification (ECGV) EER of 4.5%. In order to reach a higher security level, an alternative multimodal and a fusion technique were implemented into the system. Through the performance analysis of the three biometric system and their combination using two multimodal biometric score level fusion, this paper found the optimal combination of those systems. The best performance of the work is based on simple-sum score fusion, with a piecewise-linear normalization technique which provides an EER of 0.7%.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

இந்தக் கட்டுரையைப் பகிரவும்

குறியிடப்பட்டது

arrow_upward arrow_upward