..

பயோமெட்ரிக்ஸ் & பயோஸ்டாடிஸ்டிக்ஸ் ஜர்னல்

ஐ.எஸ்.எஸ்.என்: 2155-6180

திறந்த அணுகல்
கையெழுத்துப் பிரதியை சமர்ப்பிக்கவும் arrow_forward arrow_forward ..

Systemize the Probabilistic Discrete Event Systems with Moorepenrose Generalized-inverse Matrix Theory for Cross-sectional Behavioral Data

Abstract

Ding-Geng (Din) Chen, Xinguang Chen, Feng Lin, Y.L. Lio and Harriet Kitzman

Moore-Penrose (M-P) generalized inverse matrix theory provides a powerful approach to solve an admissible linear-equation system when the inverse of the coefficient matrix does not exist. M-P matrix theory has been used in different areas to solve challenging research questions, including operations research, signal process, and system controls. In this study, we report our work to systemize a probability discrete event systems (PDES) modeling in characterizing the progression of health risk behaviors. A novel PDES model was devised by Lin and Chen to extract and investigate longitudinal properties of smoking multi-stage behavioral progression with cross-sectional survey data. Despite its success, this PDES model requires extra exogenous equations for the model to be solvable and practically implementable. However, exogenous equations are often difficult if not impossible to obtain. Even if the additional exogenous equations are derived, the data used to generate the equations are often error-prone. By applying the M-P theory, our research demonstrates that Lin and Chen’s PDES model can be solved without using exogenous equations. For practical application, we demonstrate the M-P approach using the open-source R software with real data from 2000 National Survey of Drug Use and Health. The removal of extra data facilitate researchers to use the novel PDES method in examining human behaviors, particularly, health related behaviors for disease prevention and health promotion. Successful application of the M-P matrix theory in solving the PDES model suggests potentials of this method in system modeling to solve challenge problems for other medical and health related research.

மறுப்பு: இந்த சுருக்கமானது செயற்கை நுண்ணறிவு கருவிகளைப் பயன்படுத்தி மொழிபெயர்க்கப்பட்டது மற்றும் இன்னும் மதிப்பாய்வு செய்யப்படவில்லை அல்லது சரிபார்க்கப்படவில்லை

இந்தக் கட்டுரையைப் பகிரவும்

குறியிடப்பட்டது

arrow_upward arrow_upward